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Abstract—We present a method to classify complex valued sta-
tionary centered Gaussian autoregressive time series. Our initial
motivation comes from radar signal processing and especially
radar clutter classification, which we detail in Section I. This
issue has already been addressed in previous works, in particular
by Frédéric Barbaresco [4], [7], [16], [19], [20], Le Yang [2], [28],
Alice Le Brigant [9] and Alexis Decurninge [1], [13].
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I. RADAR MOTIVATIONS

The initial motivation for studying complex valued station-
ary centered Gaussian autoregressive time series comes from
radar signal processing, in particular the study of radar clutter.
In radar semantics, we distinguish between moving objects of
primary interest which we call targets and information related
to the radar environment which we call clutter. Radar clutter
is therefore the information recorded by a radar related to
seas, forests, fields, cities and other environmental elements
that surround the radar. In order to better distinguish targets
from clutter, it may be interesting to develop machine learning
algorithms to recognize different types of clutter. Knowledge
of radar clutter can be used to obtain a constant false alarm
rate (CFAR) detection estimator [10], [13], [26].

To study the characteristics of the complex valued time
series associated with radar clutter, it is common to assume
that they are stationary centered Gaussian autoregressive time
series [8]. The assumption of stationarity of the time series
is here justified by extremely short observation times of the
same zone of the environment. The laws of these time series
are represented in Riemannian manifolds in the works of Le
Yang [2], [28] and Alice Le Brigant [9]. This representation
model is briefly summarized in Section II; it is applied to radar
clutter clustering in the thesis work of Yann Cabanes [10].

In order to refine the study of the characteristics of radar
clutter, we want to add spatial information to the temporal
information contained in each time series by studying the

correlation between time series recorded in spatially close
cells. For this, we have developed a spatio-temporal model
[10]. In order to provide the space of the coefficients of this
spatio-temporal model with a Riemannian metric, the more
general case of multidimensional stationary time series is
studied in [10] and briefly summarized in Section III.

II. ONE-DIMENSIONAL STATIONARY TIMES SERIES

The study of one-dimensional stationary radar time series
was carried out by Frédéric Barbaresco in [3]–[7], [21]. In
these works, the stationary radar time series are represented
in the product space R∗

+ × Dn−1 where D represents the
complex unit disk. This space is endowed with a Riemannian
metric inspired by information geometry. The space R∗

+ is used
to represent the average quadratic power of the studied time
series. The product space Dn−1 represents the coefficients of
the autoregressive model, it therefore represents the Doppler
information contained in the time series.

The Burg algorithm is used to estimate the coefficients of
the autoregressive model from a recorded time series. This
algorithm is presented in the works of Frédéric Barbaresco
and Alexis Decurninge [1], [13].

The Riemannian metric constructed on the space R∗
+×Dn−1

is presented by Frédéric Barbaresco in [19], [22], [17], [16],
[15] and related works [12], [25], [14]. This metric is also
detailed in the thesis works of Le Yang [2], [28], Alice Le
Brigant [9] and Yann Cabanes [10]. We refer to Shun-ichi
Amari’s book [27] for a full presentation of the information
geometry tools used to construct this metric. We denote R++×
Dn−1 the Riemannian manifold presented in these works: the
manifold R++ ×Dn−1 corresponds to the space R∗

+ ×Dn−1

endowed with a Riemannian metric inspired by information
geometry. The computation of the mean and median in this
manifold is used to detect radar targets in the work of Le Yang
[2], [28]. The study of the curves of the manifold R++×Dn−1

is applied to the recognition of radar targets in the work of
Alice Le Brigant [9]. In the thesis work of Yann Cabanes [10],



the manifold R++ ×Dn−1 is used for radar clutter clustering
and more generally to the classification of complex stationary
centered Gaussian autoregressive time series.

III. MULTIDIMENSIONAL STATIONARY TIMES SERIES

Complex multidimensional stationary centered Gaussian
autoregressive time series are represented in a Riemannian
manifold in the thesis work of Yann Cabanes [10]. As in
the case of one-dimensional time series, it is possible to
represent multidimensional time series by the coefficients of
the autoregressive model. In the case of multidimensional
time series, these autoregressive coefficients are square ma-
trices. In the article written by Ben Jeuris and Raf Vandebril
[23], the matrix coefficients of the autoregressive model are
slightly modified to belong to the Siegel disk SDN (set of
complex matrices N ×N of singular values strictly less than
1). The multidimensional stationary time series can then be
represented in the space H+

N × SD
n−1
N , where H+

N is the
space of Hermitian Positive Definite (HPD) matrices. This
space can be endowed with a Riemannian product metric, the
construction of which is detailed in the article written by Ben
Jeuris and Raf Vandebril [23]. The product metric on the space
H+

N×SD
n−1
N induces a Riemannian metric on the spaces H+

N

and SDN . The metric of the Siegel disk SDN has been studied
by Frédéric Barbaresco in [20], [18] and the related work [24].
The Riemannian logarithm map, the Riemannian exponential
map and the sectional curvature of the Riemannian manifold
defined on the Siegel space SDN have been given by Yann
Cabanes in [10], [11]. These geometric tools are essential for
the use of certain machine learning algorithms, in particular
algorithms involving a computation of the mean as the k-
means algorithm.
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