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Abstract—With an unprecedented growth in the number of
commercially available drones, the detection of drones is be-
coming increasingly essential. Deep learning-based convolutional
neural network (CNN) models utilizing micro-Doppler signatures,
are being widely used for drone detection applications. Radar
returns from a drone and its corresponding micro-Doppler signa-
tures are often complex-valued. However, the CNNs only consider
the magnitude component of the micro-Doppler signatures while
ignoring the phase component. This phase component contains
essential information that can supplement the magnitude for
enhanced drone detection. Thus, this paper proposes a novel
complex-valued CNN that considers the magnitude and phase
component of the radar returns. This paper also investigates
the performance of the proposed model with radar returns
of different sampling frequency and duration. A comparative
analysis of the performance of the proposed model in the presence
of noise is also presented. The proposed complex-valued CNN
model achieved the highest detection accuracy of 93.80% when
the radar returns were sampled at 16000 Hz and for duration
of 0.01s. This shows that the proposed model can successfully
detect drones that appear in the radar for an extremely short
interval of time.

Index Terms—Drone detection, radar time series, Spectro-
grams, HERM lines, complex-valued CNN.

I. INTRODUCTION

With an increasing number of commercially available
drones and their widespread proliferating applications, drone
detection and classification are crucial for preserving public
safety. Drone detection and classification using acoustic sen-
sors [1] or optical sensors [2] have been explored. However,
the range of both the sensors are very limited. Acoustic sensors
are highly perceptible to environmental noise while optical
sensors are weather-sensitive. Radars, on the other hand, have
a relatively longer range of detection and perform equally
well under all weather conditions. Thus, radars have been
widely used for drone detection and classification [3]. Drone
detection and classification can be defined in their strict sense.
Drone detection refers to detecting the presence of a drone

while drone classification refers to identification of the type
of drone after detection. This work focuses on radar-based
drone detection application only.

Deep learning and machine learning have proven to be
highly efficient in drone detection [4], [5]. The micro-Doppler
signatures or spectrograms of radar returns from a drone
have been used to detect drones [6]. These signatures contain
information of the periodic motion of drone propellers/blades
which help in distinguishing between a radar return from a
drone and noise. Radar returns are complex-valued signals
that produce complex-valued spectrograms, containing both
magnitude and phase information. Majority of state-of-the-
art works consider only the magnitude component of the
complex-valued spectrograms for drone detection [7] , [8] and
the phase component is discarded. However, this phase com-
ponent contains significant information that may supplement
the magnitude information for improved drone detection and
classification [9]. Thus, this work proposes a novel complex-
valued convolutional neural network (CNN) model for drone
detection.

In this work, the radar returns of popular commercially
available drones have been simulated using the Martin-
Mulgrew (MM) model [10] and these simulated complex-
valued time series have been used for binary classification.
These radar returns have been modelled at different signal-
to-noise ratios (SNR) (5dB, 10dB and 15dB) for extensive
model performance analysis in the presence of noise. The
contributions of this work are:

• Two new complex-valued CNN models have been pro-
posed with complex-valued time series and complex-
valued spectrograms as inputs individually. A third real-
valued CNN model has also been presented to compare
the performances.

• An exhaustive comparative analysis of the performances
of these three CNN models has been carried out on three
datasets corresponding to different sampling frequency
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and signal duration. For each of these three simulated
datasets, the classification has been performed with three
different SNRs (5dB, 10dB and 15dB).

• The execution time of the proposed models has also been
explored.

The remainder of this paper is organized as follows. Section
II discusses the dataset generation and data pre-processing
procedures. Section III introduces the proposed experimental
model while Section IV shows the results and the inferences
that can be drawn. Section V concludes the paper.

II. DATA PREPARATION

A. Data generation using Martin-Mulgrew Model

The Martin-Mulgrew (MM) model [10], originally designed
to analyse the radar returns of aircraft propeller blades, can
model radar return signals (in form of complex times series
of desired time duration) of any aerial object with rotating
propellers such as drones. This MM model is given as:

Ψ(t) =Are
j(2πfct− 4π

λ (R+Vradt))

N−1∑
n=0

(α+ β cos (Ωn)) e
−j

L1+L2
2 γnsinc

(
L2 − L1

2
γn

)
where

α = sin (|θ|+Φp) + sin (|θ| − Φp)

β = sign (θ) (sin (|θ|+Φp)− sin (|θ| − Φp))

Ωn = 2π
(
frott+

n

N

)
γn =

4π

λ
cos (θ) sin (Ωn)

(1)

Ar is a real, scaling factor,
L1 is the distance of the blade roots from the centre of
rotation,
L2 is the distance of the blade tips from the center of
rotation,
N is the number of blades,
R is the range of the target,
Vrad is the radial velocity of the center of rotation with
respect to the radar,
λ is the wavelength of the transmitted radar signal,
θ is the angle between the plane of rotation and the line
of sight from the radar to the center of rotation,
fc is the frequency of the transmitted radar signal,
frot is the frequency of rotation of drone blades,
t is the time duration of radar returns,
Φp is the pitch of the blades

The simulation parameters N , L1, L2, and frot characterises
drone blades/propellers while λ and fc determine the type of
radar. The position of the drone relative to the radar is defined
by θ, Φp, R and Vrad. The data generated using the MM model
is discretized at a sampling frequency of fs.

In this work, radar returns of an X-band radar from 5
different types of commercially available drones (DJI Mavic

Air 2, DJI Mavic Mini, DJI Matrice 300 RTK, DJI Phantom
4 and Parrot Disco) are simulated using the MM model.
The simulated X-band radar has a wavelength λ of 3cm,
transmitting frequency fc of 10 GHz and pulse repetition
frequency (PRF) of 2kHz. The approximate drone parameters
of each drone for which the radar returns are simulated are
shown in Table I.

TABLE I
APPROXIMATE DRONE-BLADE PARAMETERS OF DRONES.

Drone type N L1 (cm) L2 (cm) frot (Hz)
DJI Mavic Air 2 [7] 2 0.50 7.00 91.66
DJI Mavic Mini [7] 2 0.50 3.50 160.00
DJI Matrice 300 RTK [7] 2 5.00 26.65 70.00
DJI Phantom 4 [7] 2 0.60 5.00 116.00
Parrot Disco [7] 2 1.00 10.40 40.00

The drones shown in Table I have fixed blade pitches.
However, several commercially available drones have variable
blade pitches, thus, to maintain generalizability, Φp, θ and
R are considered as variable parameters that are uniformly
distributed in the range of

(
0, π

4

)
,
(

π
16 ,

π
2

)
and (500, 2000)

respectively [4]. The radial velocity of the drone Vrad is
kept constant at 4 rad/s. Each radar return from a drone is
polluted with a complex-valued Gaussian noise of a particular
SNR which determines the scaling factor Ar according to the
following equation:

SNR = 10 log10

(
A2

r

σ2

)
(2)

where σ2 is the variance of the added Gaussian noise and is
equal to 1 in our simulations (Note: the mean of the added
Gaussian noise is 0). Therefore, for a given SNR, Ar is given
as:

Ar = 10SNR/20 (3)

In this work, three different datasets of different signal
duration t and sampling frequency have been simulated. The
total number of samples in each radar return has been kept
fixed (equal to 160 samples) as shown in Table II. Each dataset
contains 2000 time series (samples) of each of the five drone
classes and 10000 complex valued Gaussian noise signals of
the same duration t. Each dataset has radar returns polluted
with Gaussian noise of three different SNRs, 5dB, 10dB and
15dB individually. Thus, three variations of each dataset type
at three different noise levels are simulated for analysis.

TABLE II
TYPES OF DATASET SIMULATED.

Set Signal
Duration

Sampling
Frequency

Total
Samples

Set A 0.1s 1600Hz 160
Set B 0.05s 3200Hz 160
Set C 0.01s 16000Hz 160
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B. Data pre-processing

The micro-Doppler signatures (or spectrograms) corre-
sponding to the rotating blades of the drones enables its
detection. The magnitude of the short-time Fourier transform
(STFT) applied on the simulated complex radar-returns (com-
plex time series) produces spectrograms. It can be given as:

X(m,ω) =

∣∣∣∣∣
∞∑

n=−∞
x(n)w(n−m)e−jωn

∣∣∣∣∣
2

(4)

where w(n) is the window function centered at time index m.
To detect the drones accurately, the rotation period of drone
blades should be observed in a spectrogram. This observation
is dependent on the applied window size. If the window size is
at least half the rotation period of the blades then a wideband
spectrogram is formed showing the periodicity of the rotating
blades over the entire time duration. This is called the blade
flash phenomena [11]. However, to capture these blade flashes,
either the radar PRF should be high or the applied window size
should be longer than the period of blade rotation. Hardware
implementation of a radar with high PRF is extremely difficult.
Thus, a long window STFT can be used to capture blade
flashes through HElicopter Rotation Modulation (HERM) lines
[12].

In this work, long Hamming windowed STFT with 80%
overlap has been used to produce spectrograms which serve
as an input to the deep learning models described in Section
III. The window size w is estimated based on the period of
blade rotation of a drone and is given as:

w =
fs
frot

(5)

where fs is the sampling frequency in KHz and frot is the
frequency of the rotation of drone blades in Hz. The simulated
radar return (with SNR 15dB) of Parrot disco drone and its
corresponding short windowed STFT (window length of 128
samples) and long windowed STFT spectrograms (window
length of 512 samples) is shown in Figure 1. The periodicity
of rotating blades is clearly observed in the long-window
STFT. The simulated Gaussian noise and its corresponding
short windowed STFT and long windowed STFT spectrograms
which does not show the periodicity of rotating blades is
shown on Figure 2.

III. EXPERIMENTAL APPROACH

The majority of existing work uses the magnitude of the
complex-valued radar returns for drone detection or other
application. However, radar returns are complex-valued sig-
nals, having both magnitude and phase components. Thus,
using both magnitude and phase components of the complex
valued radar returns will provide more information that will
facilitate better drone detection. This work presents an ex-
haustive comparative analysis of the performance of deep-
learning complex-valued CNN models with different types
of inputs. Three different types of inputs (both time and
frequency domain inputs), namely, magnitude of spectrograms

Fig. 1. STFT plots of Parrot Disco Drone

Fig. 2. STFT plots of Gaussian Noise

(real frequency domain input), magnitude and phase of spec-
trograms (complex frequency domain input) and raw radar re-
turns (complex time domain input) have been analysed. Three
different convolutional neural networks (CNN)-based deep-
learning models have been introduced. Fig.3 shows pipeline
of the proposed deep-learning models.

Fig. 3. Pipeline of the proposed deep-learning models

A. Model 1: Real-valued CNN on the magnitude of the spec-
trograms

In this model, magnitude of spectrograms are used as
an input to a CNN-based model. The complex-valued radar
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returns are split into real and imaginary components and
long-windowed STFT is applied on the real and imaginary
components individually to obtain real-valued STFTs which
are then concatenated to form a 2D-array. This 2D real-
valued array serves as an input to a CNN-model made up
of six blocks. Each block consists of a 2D convolutional layer
followed by an instance normalization layer except the last
block which does not contain an instance normalization layer.
The first block was followed by a max pooling layer and each
block is followed by a dropout layer of 0.5 probability. All
blocks had leaky Rectified Linear Unit (ReLU) as activation
function. The kernel size of the 2D convolutional layers in the
first two blocks are 1×9 and 5×5, respectively, while the rest
of 2D convolutional layers in each of the blocks has a kernel
size of 3.

B. Model 2: Complex-valued CNN on the complex-valued
spectrograms

In this model, complex-valued spectrograms are used as
inputs to the complex-valued CNN-based model [13]. Long-
windowed STFT is applied to the raw radar return which
produces complex-valued STFTs. These STFTs are then used
as inputs to a CNN-model made up of six blocks. Each block
consists of a 2D convolutional layer followed by an instance
normalization layer except the last block which does not
contain an instance normalization layer. After the third block,
the magnitude of the complex output of the third block is
calculated and fed into the fourth block for further processing.
The first three blocks have complex-valued 2D convolutional
layers with complex leaky ReLU as activation function while
the last three blocks have real-valued 2D convolutional layers
with leaky ReLU as activation function. The first block was
followed by a max pooling layer and each block is followed
by a dropout layer of 0.5 probability. All 2D convolutional
layers have a kernel size of 3× 3.

C. Model 3: Complex-valued CNN on the raw complex radar
time series

In this model, complex-valued raw radar returns (time
series) are fed into a CNN-based model which also consists of
six blocks. The first block consists of a complex 1D convolu-
tional layer with kernel size 3×3 and complex ReLU activation
function followed by an instance normalization layer. The
output of the instance normalization layer is a complex 2D
array which is then fed into the second block consisting of
a complex 2D convolutional layer with kernel size 3 × 3
and complex leaky ReLU activation function followed by an
instance normalization layer. The third block is similar to the
second block and outputs a complex-valued 2D array. The
magnitude of this complex array is calculated and fed into the
fourth block of the CNN model that consists of a real-valued
2D convolutional layer with kernel size 3×3 and leaky ReLU
activation function followed by instance normalization layer
and a max pooling layer. The last two layers are made up of
a real-valued 2D convolutional layer with kernel size 3 × 3

and leaky ReLU activation function followed by an instance
normalization layer.

IV. RESULTS AND DISCUSSIONS

In this work, drone detection has been posed as a clas-
sification problem with two classes, namely, ’Drone Present
(DP)’ and ’Drone Absent (DA)’. Each class has 10000 time
series of sample length 160. The class DP has 2000 complex
time series of five different types of drones to demonstrate the
applicability of the proposed model irrespective of drone type.
The class DA has 10000 complex Gaussian noise series, each
of length 160. The input datasets were split into 80%-20%
training and test dataset. A 5-fold cross validation technique
was used for testing.

The proposed models were trained for 100 epochs with
a learning rate of 0.001 and an early stopping function of
patience 15. Adam optimizer and cross entropy loss function
was used for all proposed models. The performance of the
proposed models for drone detection is evaluated using several
performance metrics such as accuracy, precision, recall and
F1-score. The performance metrics of the proposed models
with various sets of input signals of different signal duration,
sampling frequency and level of noise is shown in Table III.
An SNR of 5dB refers to a high level of noise present while an
SNR of 15dB implies a low level of noise. The total number
of samples is kept equal to 160 for all complex time series.

The simulated time series in set A has the longest signal
duration and lowest sampling frequency whereas the simulated
time series in set C has the shortest time duration and highest
sampling frequency as shown in Table II. The following
observations can be made from Table III:

• The performance of each of the proposed models de-
creases when the SNR decreases: the performance of
the models at SNR 15dB is better as compared to the
performance of the models at SNR 5dB.

• The performance of models with Set C inputs is signifi-
cantly higher when compared to the performance of the
models with Set B and Set A inputs at all SNR levels. The
performance of models with Set A inputs is the lowest.
This implies that the performance of the models at high
sampling frequency is significantly higher than that of
low sampling frequency.

• The performance of model 2 is significantly higher than
that of model 1 and model 3. The performance of model
1 and the performance of 3 are almost similar with model
3 being slightly inferior.

• The standard deviation amongst the performance of the
model for 5-folds is smaller for higher SNR levels and
higher sampling frequency dataset.

It can be concluded that model 2, that is, complex-valued
CNN model with spectrograms as inputs performs significantly
better as compared model 1 and model 3. This indicates that
both magnitude and phase of the complex valued inputs con-
tribute in improving the performance of the drone detection. It
can also be concluded from the observations that the proposed
models can detect a drone in small signal duration if the
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TABLE III
PERFORMANCE METRICS (IN%)

Model Model 1 Model 2 Model 3
SNR 5dB 10dB 15dB 5dB 10dB 15dB 5dB 10dB 15dB

Set A

Accuracy= 56.65 ± 0.56
Precision=54.21 ± 0.71
Recall= 86.58 ± 8.84
F1-score= 66.46 ± 2.51

Accuracy=70.53 ± 1.18
Precision=65.59 ± 2.07
Recall=87.13 ± 6.07
F1-score= 74.66 ± 1.40

Accuracy=83.51 ± 1.32
Precision= 78.13 ± 3.33
Recall=93.39 ± 3.69
F1-score=84.95 ± 1.40

Accuracy=66.62 ± 0.16
Precision=64.76 ± 0.95
Recall=72.94 ± 3.26
F1-score=68.56 ± 1.3

Accuracy=81.28± 0.86
Precision=75.79 ± 0.93
Recall=91.94 ± 3.19
F1-score=83.05 ± 1.20

Accuracy=87.92 ± 0.76
Precision=83.19 ± 1.45
Recall=95.17 ± 3.76
F1-score=88.70 ± 1.05

Accuracy=54.03 ± 2.27
Precision= 53.42 ± 1.17
Recall= 63.04 ± 7.33
F1-score=57.65 ± 3.35

Accuracy=74.44 ± 1.07
Precision=71.10 ± 1.01
Recall=82.41 ± 4.32
F1-score=76.27 ± 1.71

Accuracy= 83.78 ± 0.65
Precision=80.82 ± 1.90
Recall=88.70± 3.25
F1-score=84.51 ± 0.95

SetB

Accuracy=61.93± 0.99
Precision=59.43 ± 1.24
Recall=76.14 ± 10.48
F1-score=66.36 ± 3.62

Accuracy=72.07 ± 0.96
Precision=67.93 ± 1.52
Recall=83.91 ± 4.33
F1-score=74.99 ± 1.33

Accuracy=83.71 ± 1.22
Precision=79.15 ± 1.45
Recall=91.54 ± 2.55
F1-score= 84.87 ± 1.38

Accuracy=70.15 ± 2.91
Precision=67.97 ± 1.33
Recall=76.07 ± 11.03
F1-score=71.40 ± 5.35

Accuracy=82.21 ± 1.72
Precision=77.86 ± 1.33
Recall=90.17 ± 5.07
F1-score= 83.47 ± 1.90

Accuracy=91.20 ± 1.12
Precision=86.46 ± 2.23
Recall=97.80 ± 0.86
F1-score=91.76 ± 0.97

Accuracy=59.63 ± 0.90
Precision=57.64 ± 1.46
Recall=73.33 ± 4.58
F1-score=64.44 ± 1.28

Accuracy=74.64 ± 2.13
Precision=69.91 ± 1.56
Recall=86.30 ± 3.98
F1-score=77.23 ± 2.44

Accuracy=85.93± 0.56
Precision=82.26 ± 2.50
Recall=91.91 ± 4.39
F1-score=86.69 ± 0.93

SetC

Accuracy=76.20 ± 0.96
Precision=70.00 ± 0.96
Recall=91.84 ± 3.74
F1-score=79.39 ± 1.00

Accuracy=84.86 ± 0.82
Precision=79.43 ± 1.57
Recall=94.07 ± 2.72
F1-score=86.09 ± 1.20

Accuracy=91.76 ± 0.88
Precision=88.29 ± 1.08
Recall=96.27 ± 1.51
F1-score=92.10 ± 0.93

Accuracy=79.47 ± 0.41
Precision=73.87 ± 0.86
Recall=91.22 ± 1.39
F1-score=81.62 ± 0.30

Accuracy=88.36 ± 0.57
Precision=83.04 ± 0.89
Recall=96.44 ± 1.12
F1-score=89.23 ± 0.51

Accuracy=93.80 ± 0.44
Precision=90.06 ± 0.48
Recall=98.46 ± 1.22
F1-score=94.06 ± 0.49

Accuracy= 75.37 ± 0.53
Precision=70.55 ± 1.48
Recall=87.41 ± 4.80
F1-score=77.96 ± 1.19

Accuracy=84.23 ± 0.55
Precision=79.85 ± 0.57
Recall=91.55 ± 1.03
F1-score=85.31 ± 0.61

Accuracy=91.09 ± 0.45
Precision=87.83 ± 1.31
Recall=95.45 ± 1.88
F1-score=91.46 ± 0.55

sampling frequency is high. The highest accuracy, precision,
recall and F1-score with lowest standard deviation for drone
detection is achieved by model-2 for input set C at SNR 15dB.
An evaluation of execution times for the proposed models
for input set C at SNR 15dB is given in Table IV. It can
be observed that Model 2 has a longer execution time as
compared to model 1 but it performs significantly better than
model 1 as well.

TABLE IV
EXECUTION TIME OF THE PROPOSED MODELS

Model Model 1 Model 2 Model 3
Time (in s) 4675 6658 7865

V. CONCLUSION

A classification algorithm based on complex-valued CNN
was used to detect drones from radar time series. Performance
analyses of three CNNs:

• a real-valued CNN taking the magnitude of the spectro-
grams as inputs,

• a complex-valued CNN taking complex-valued spectro-
grams as inputs,

• a complex-valued CNN taking the raw complex radar
time series as inputs.

were carried out using simulated datasets. For each simu-
lated dataset, the complex-valued CNN with complex-valued
spectrograms as inputs outperforms the two other models.
The execution time of complex-valued CNN is found to be
higher than real-valued CNN. Albeit this, the complex-valued
CNN provides better drone detection and therefore is a good
candidate for drone detection based on radar time series.
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