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Abstract: This paper focuses on the robustness aspects of Doppler signal processing
tasks with Machine Learning algorithms within the context of pathological radar clutter
classification. More precisely, group-based convolution operators are combined with the
hyperbolic embedding technique to build an equivariant neural network operating on
the Doppler signal represented as complex covariance matrices. Our numerical testing
performed on simulated data has shown the superiority of our approach when compared
to conventional neural networks, from both accuracy and robustness standpoints.

1. Introduction

The deployment of a radar on a new geographical site is long and costly, and this process could
be alleviated by an automated recognition of pathological clutter. As in [1], we aim at devel-
oping a Machine Learning (ML) algorithm allowing to identify specific clutter characteristics
from their Doppler spectrum fluctuation. It has been shown in [6, 7, 8, 9] that ML techniques
can be used to obtain very good results for the classification of radar micro-Doppler data. Al-
though very promising from an accuracy standpoint, these works do not focus on the robustness
of the considered ML algorithms, leaving for instance aside the impact of an increase of the
sensor thermal noise on the inference results.

ML algorithms can be made more robust to a given set of transforms of their inputs by using
training data augmentation strategies, as demonstrated within the image processing area [3].
With this approach, the robustness is learnt directly from the data by spending some useful
capacity of the algorithm. There is also no theoretical robustness guarantee for the trained al-
gorithm, although attempts have been made to theorize the data augmentation process and its
effects [4, 5].

In this paper, we introduce an approach combining hyperbolic embedding and equivariant inner
representation of the input Doppler signal through a group-based convolutional neural network.
The proposed architecture in particular ensures that local robustness to a specific group action
is enforced through the algorithmic design.
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2. From Covariance Matrices to Cosets

We follow [1] and represent each cell by its covariance matrix, which is Toeplitz Hermitian
Positive Definite (THPD). We explain in the following how a given THDP matrix can actually
be seen as a manifold valued function for which there exists a natural group action.

To do so, we denote by D the Poincaré unit disk D = {z = x+ iy ∈ C/ |z| < 1} and by T the
unit circle T = {z = x+ iy ∈ C/ |z| = 1}. We then consider the following Lie Groups:

SU(1, 1) =

{
gα,β =

[
α β

β̄ ᾱ

]
/ |α|2 − |β|2 = 1, α, β ∈ C

}
(1)

U(1) =

{[
α/ |α| 0

0 ᾱ/ |α|

]
, α ∈ C

}
(2)

We can endow D with a transitive group action ◦ of SU(1, 1) defined as it follows

∀gα,β ∈ SU(1, 1), ∀z ∈ D, gα,β ◦ z =
αz + β

β̄z + ᾱ
(3)

The Cartan decomposition associated with SU(1, 1) is the following[
α β

β̄ ᾱ

]
= |α|

[
1 z

z̄ 1

] [
α/ |α| 0

0 ᾱ/ |α|

]
(4)

with z = β
ᾱ

and |α| = 1

(1−|z|2)
1/2 . This allows building the following diffeomorphism between

SU(1, 1) (seen as a topological space) and T× D

φ :

{
SU(1, 1) → T× D
gα,β 7→

(
eiθα , β

ᾱ

) (5)

where θα = arg (α) mod 2π. As T ' U(1) as a group, we can therefore associate z ∈ D with
an element of the quotient space SU(1, 1)/U(1), which can then further be lifted to a group
element gα,β ∈ SU(1, 1) by choosing 

α = eiθz/2

(1−|z|2)
1/2

β = |z|eiθz/2

(1−|z|2)
1/2

(6)

Let’s then denote by T +
n the set of Toeplitz Hermitian Positive Definite (THPD) matrices of

size n. As described in [1], the regularized Burg algorithm allows transforming a given matrix
Γ ∈ T +

n into a power factor in R∗+ and reflection coefficients in a (n − 1) dimensional product
of Poincaré spaces Dn−1 = D× ...× D via the bijective map

ψn :

{
T +
n → R∗+ × Dn−1

Γ 7→ (p0, µ1, ..., µn−1)
(7)

Combining all of the above, we can therefore see an element Γ∈ T +
n as a power factor in R∗+

and n − 1 cosets elements in SU(1, 1)/U(1). In the following, we will focus on radar clutter
classification and we will consider as in [1] rescaled THPD matrices which can be represented
by the reflection coefficients only.

2



3. Related Work and Contribution

Classifying Doppler data with deep learning methods has been investigated from several angles
by leveraging on the multiple representations of the signal, including in particular the use of
off-the-shelf algorithms such as Convolutional Neural Networks (CNN) [7] or Long-Short Term
Memory (LSTM) modeling [6]. Other approaches leverage on the natural representation of the
Doppler signal as Symmetric Positive Define (SPD) matrices [9] or HPD matrices [8] when the
complex phase term is taken into account.

Classifying SPD, HPD and THPD matrices is a specific case of the problem of classifying
manifold valued data, for which generic algorithms have been introduced. For instance, the
usual convolution operator on R2 is generalized to manifold valued images in [10] and provides
equivariance to the isometry group admitted by the underlying manifold.

Also, Group-Convolutional Neural Networks (G-CNN) are becoming more and more popular
as they are shown to be efficient for a wide range of operational applications [12, 13]. Following
several pieces of work such as [14, 15] generalizing usual CNN [11] by introducing group-based
convolution kernels, [13] has recently introduced a very generic approach providing equivari-
ance to any Lie Group with a surjective exponential map and which is applicable to any input
data representable by a function defined on a smooth manifold and valued in a vectorial space.

By leveraging on [13], we introduce in the present paper a G-CNN equivariant to SU(1, 1) and
applicable to the grid of points of D obtained from the hyperbolic embedding of the covariance
matrices. We have implemented our approach in TensorFlow in a differentiable way to allow
end-to-end training of the proposed architecture.

Numerical experiments have been performed by working with simulated data and we provide
in the following some evidence for the robustness of the approach to perturbations arising with
the increase of the thermal noise of the sensor. To further appreciate the benefits of using equiv-
ariant layers operating in the hyperbolic space, we also show the superiority of our approach by
providing a comparison with the use of conventional fully connected neural networks.

4. Group-Equivariant Neural Network with Hyperbolic Embedding

We propose building a SU(1, 1)-equivariant neural network by combining hyperbolic embed-
ding and group-based convolution feature maps as depicted on Fig. 1.

4.1. Group-based Convolution Operator

For G = SU(1, 1), we will build feature maps ψ : G → C by leveraging on the convolution
operators on groups. More precisely, for a kernel function kθ : G→ C parameterized by θ ∈ R`,
an input feature map f : G → C and a group element g ∈ G, we will consider the following
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operator ψθ

ψθ (g) = (kθ ?G f) (g) =

∫
G

kθ
(
h−1g

)
f (h) dµG (h) (8)

as long as the right handside integral is well defined, i.e for kθ, f ∈ L1
(
G, dµG

)
where

L1 (X, dµ) refers to the set of functions from X to C which are integrable with respect to
the measure µ. In equation (8), µG refers to the Haar measure of G that is normalized according
to ∫

G

F (g ◦ 0D) dµG (g) =

∫
D
F (z) dm(z) (9)

for all F ∈ L1 (D, dm), with 0D the center of D, and where the measure dm is given, for
z = z1 + iz2, by

dm (z) =
dz1dz2(

1− |z|2
)2 (10)

We emphasize here that the convolution operator ψθ is equivariant with respect to the action of
G so that Lgψθ = kθ ?G (Lgf), for all g ∈ G and where Lg is the left shift operator such that
∀h ∈ G and ∀f : G → C, Lgf(h) = f (g−1h). Said differently, it means that the convolution
feature map is transformed consistently with the input data, as illustrated on Fig. 2.

As we don’t have much prior knowledge about the shape of the kernel kθ : G→ C in practice,
we generically model it as a simple Fully Connected Neural Network (FCNN) as in [13]. After
adequate localization of the kernel function, the integral (8) can be computed by a Monte-Carlo
approach or by using Helason-Fourier analysis [17] on symmetric spaces following the ideas
underlying to the approach [15] introduced for compact groups.

4.2. Lifting Operator

In order to process the input Γ ∈ T +
n corresponding to the reflexion coefficients µ1,...,µn−1

with the group-based convolution layers as previously introduced, a lifting step is required to
represent the data as a function fΓ : SU(1, 1)→ C. Assuming that the ordering of the reflection
coefficients is not material for our considered classification task, we will represent a given
element Γ ∈ T +

n as it follows:

fΓ :

{
SU(1, 1) → C
g 7→

∑n−1
i=1 µ

C
g 1{µg=µi}

(11)

where µ → µC is the canonical embedding from SU(1, 1)/U(1) ' D to C, and µg ∈
SU(1, 1)/U(1) refers to the class of g ∈ SU(1, 1) in the quotient space SU(1, 1)/U(1).
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Figure 1: SU(1, 1)-equivariant Neural Network with hyperbolic embedding for THPD matrix classification. The
initial THPD matrix Γ is embedded into Dn−1 through the computation of the reflexion coefficients µi, which
will be themselves lifted to a function fΓ : SU(1, 1) → C. The lifted representation is then processed with J

group-based convolution layers of `i feature maps each and denoted ψ
θn`j

`j
.

Figure 2: Example of an equivariant gaussian convolution feature map and corresponding inputs in dimension
n = 50. The input data points are represented in D (after folding from Dn−1 ) while the features maps discretized
over 1000 samples are shown in the complex plane. The initial points µ1, ..., µn−1 ∈ D (top-left) are subject to the
action of an element gα,β ∈ SU(1, 1), leading to transformed points (top-right). The group-convolution operator is
applied to the corresponding lifted features maps (bottom) and the action of gα,β ∈ SU(1, 1) transforms the initial
convoluted data (bottom left) to the convolution of the transformed data (bottom right), making the overall diagram
commutative.
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5. Numerical Experiments

We have implemented our approach in TensorFlow and we provide in the following the results
of experiments for pathological radar clutter classification. All tests have been run using a single
workstation equiped with a NVIDIA GeForce RTX 2080 GPU card.

5.1. Classification Problem

We have considered the problem of pathological radar clutter classification as formulated in [1].
More precisely, we represent each cell by its THPD auto-correlation matrix Γ, our goal being to
predict the corresponding clutter c ∈ {1, ..., nc} from the observation of Γ. The input data have
been obtained by simulating the auto-correlation matrix of a given cell according to

Z =
√
τR1/2x+ bradar (12)

where τ is a positive random variable corresponding to the clutter texture, R a THPD matrix
associated with a given clutter, x ∼ NC (0, σx) and bradar ∼ NC (0, σ), with NC (0, t) referring
to the complex Gaussian distribution with mean 0 and standard deviation t. In the following,
bradar will be considered as a source of thermal noise inherent to the sensor.

5.2. Testing Set-Up

We will be interested in the following in evaluating the accuracy and the robustness of our
approach by considering a neural network constituted of one SU(1, 1) convolutional layer with
one feature map, followed by one fully connected output layer. The kernel function is modeled
as a neural network with one layer of 32 neurons with swish activation functions.

To appreciate the improvement provided by our approach, we will compare the obtained results
with those corresponding to the use of a conventional neural network operating on the complex
reflections coefficients. By using one hidden layer of 40 neurons, both approaches rely roughly
on the same numbers of trainable parameters.

In the following, we will denote NG
σ (resp. N FC

σ ) the neural network with SU(1, 1) equivariant
convolutional (resp. fully connected) layers and trained on 400 THPD matrices of dimension
10 corresponding to 4 different classes (100 samples in each class) which have been simulated
according to (12) with a thermal noise standard deviation σ.

5.3. Results and Discussion

In order to evaluate the algorithms NG
σ and N FC

σ , we have considered several testing sets Tσ
consisting in 2000 THPD matrices of dimension 10 (500 samples in each of the 4 classes)
simulated according to (12) with a thermal noise standard deviation σ.
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Tσ NG
1 N FC

1 NG
250 N FC

250

T1 0.9873 (0.0015) 0.9735 (0.0037) 0.9891 (0.0021) 0.9846 (0.0026)

T50 0.9606 (0.0039) 0.9301 (0.0054) 0.9653 (0.0034) 0.9621 (0.0047)

T100 0.9327 (0.0074) 0.8811 (0.0041) 0.9386 (0.0054) 0.9401 (0.0039)

T150 0.9051 (0.0054) 0.8419 (0.0044) 0.9148 (0.0032) 0.9191 (0.0056)

T200 0.8805 (0.0056) 0.8042 (0.0058) 0.8955 (0.0068) 0.8988 (0.0043)

Table 1: Accuracy results of the algorithms NG
1 , NFC

1 , NG
250 and NFC

250 on the testing sets Tσ , averaged over 10
realizations and together with the corresponding standard deviation in brackets.

Figure 3: The confusion matrix on the left handside corresponds to the evaluation of NG
1 on the testing set T1,

averaged over 10 realizations. The robustness of the approach is illustrated on the right handside where average
accuracy results of the algorithms NG

1 , NFC
1 , NG

250 and NFC
250 on the testing sets Tσ are shown as a function of σ,

together with the corresponding standard deviation as error bars.

Our results are shown in Table 1 and on Figure 3. To interpret the numbers, we first emphasize
that the algorithms NG

250 and N FC
250 could be seen as NG

1 and N FC
1 trained on augmented data

with respect to the thermal noise. The fact that NG
250 and N FC

250 achieve similar performances is
therefore expected from a theoretical standpoint and gives us some comfort with respect to the
correctness of the implementation of our approach.

We then observe thatNG
1 reaches similar performances asNG

250 andN FC
250 as σ increases, mean-

ing that our approach allows to achieve some degree of robustness with respect to the variation
of σ through the use of equivariant layers and pooling steps. The small discrepancies (≈ 1% for
σ = 200) between the results obtained with NG

1 and the performances achieved by NG
250 and

N FC
250 can be attributed to discretization effects in the implementation arising in particular with

the computation of the SU(1, 1) convolution maps. This behavior has to be compared with that
of N FC

1 which consistently achieves lower accuracy results than NG
1 , hence demonstrating the

superiority of our approach from both accuracy and robustness standpoints.
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6. Conclusions and Further Work

By leveraging on the hyperbolic embedding approach to represent THPD matrices, we have
introduced a SU(1, 1) equivariant neural network to perform supervised classification taks with
application to pathological radar clutter classification.

Our approach has been implemented in TensorFlow and we have demonstrated its superiority
from both accuracy and robustness standpoints by working on simulated data and by focusing
on thermal noise related perturbations.

Further work will include extending the approach to perform Positive Definite Block-Topelitz
matrices classification by leveraging on their embedding into Siegel spaces [2] and by building
SU(n, n) equivariant neural networks. This would in particular allow considering the spatial
dimension of the signal in the learning algorithm.
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