
SU(1, 1) Equivariant Neural Networks
and Application to Robust Toeplitz
Hermitian Positive Definite Matrix

Classification

Pierre-Yves Lagrave1(B) , Yann Cabanes2,3 , and Frédéric Barbaresco2

1 Thales Research and Technology, Palaiseau, France
pierre-yves.lagrave@thalesgroup.com

2 Thales Land and Air Systems, Limours, France
frederic.barbaresco@thalesgroup.com
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Abstract. In this paper, we propose a practical approach for building
SU(1, 1) equivariant neural networks to process data with support within
the Poincaré disk D. By leveraging on the transitive action of SU(1, 1)
on D, we define an equivariant convolution operator on D and introduce
a Helgason-Fourier analysis approach for its computation, that we com-
pare with a conditional Monte-Carlo method. Finally, we illustrate the
performance of such neural networks from both accuracy and robustness
standpoints through the example of Toeplitz Hermitian Positive Definite
(THPD) matrix classification in the context of radar clutter identifica-
tion from the corresponding Doppler signals.

Keywords: Equivariant neural networks · Hyperbolic embedding ·
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1 Introduction

Group-Convolutional Neural Networks (G-CNN) are becoming more and more
popular thanks to their conceptual soundness and to their ability to reach state-
of-the-art accuracies for a wide range of applications [3,9,12]. In this paper, we
propose a scalable approach for building SU(1, 1) equivariant neural networks
and provide numerical results for their application to Toeplitz Hermitian Positive
Definite (THPD) matrix classification.

Dealing with THPD matrices is indeed of particular interest for Doppler sig-
nal processing tasks, as the input data can be represented by auto-correlation
matrices assuming some stationarity assumptions [5], which can themselves be
embedded into a product space of Poincaré disks after proper rescaling [6] by
leveraging on the Trench-Verblunsky theorem. We have instanciated a SU(1, 1)
equivariant neural network in this context and have provided accuracy and
robustness results by using simulated data according to some realistic radar
clutter modeling [6].
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1.1 Related Work and Contribution

G-CNN have initially been introduced in the seminal work [8] as a generalization
of usual CNN [15] by introducing group-based convolution kernels to achieve
equivariance with respect to the action of finite groups and have further been
generalized to more generic actions [9,14]. In particular, [10] proposed a sound
theory for the case of the transitive action of a compact group on its homogeneous
space by leveraging on group representation theory, a topic also covered in [7].

In [2], G-CNN on Lie groups have been introduced for homogeneous spaces by
decomposing the kernel function on a B-splines basis. Anchoring in similar ideas,
[12] introduced a very generic approach providing equivariance to the action of
any Lie group with a surjective exponential map and which is applicable to any
input data representable by a function defined on a smooth manifold and valued
in a vectorial space.

Practical applications of G-CNN mainly relate to groups of transforms in
Euclidean spaces such as SE(2), SO(3), R∗

+, or the semi-product of those with
the translation group. In the present paper, we work with the group of isometric
transforms SU(1, 1) acting on the hyperbolic space represented as the Poincaré
disk D.

Although existing works provide tools for specifying SU(1, 1) based G-CNN
on which we will anchor, working with non-compact groups is quite challenging
from a numerical stanpoint. For instance, the Monte-Carlo approach of [12] faces
scalability issue with the number of layers of the considered network due to
the large sampling requirement for SU(1, 1). As a remediation for our specific
SU(1, 1) instanciation, we propose specifying the convolution operator on the
corresponding homogeneous space D rather than on the group itself in order to
leverage on Helgason-Fourier analysis, following the ideas introduced for compact
group actions in [14] and generalized in [7].

Finally, we have applied our approach to the problem of classifying THPD
matrices arising in the context of Doppler signals processing. We propose here
an alternative approach to [5] by using a SU(1, 1) equivariant neural network
operating on the hyperbolic representation of the THPD matrices manifold.

1.2 Preliminaries

We denote D the Poincaré unit disk D = {z = x + iy ∈ C/ |z| < 1} and by T the
unit circle T = {z = x + iy ∈ C/ |z| = 1}. We further introduce the following Lie
groups:

SU(1, 1) =
{

gα,β =
[

α β
β̄ ᾱ

∣∣∣∣ , |α|2 − |β|2 = 1, α, β ∈ C

}
(1)

U(1) =
{[

α/ |α| 0
0 ᾱ/ |α|

]
, α ∈ C

}
(2)

We can endow D with a transitive action ◦ of SU(1, 1) defined as it follows

∀gα,β ∈ SU(1, 1), ∀z ∈ D, gα,β ◦ z =
αz + β

β̄z + ᾱ
(3)
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The Cartan decomposition associated with SU(1, 1) allows building a diffeomor-
phism between SU(1, 1) (seen as a topological space) and T×D [11]. As T � U(1)
as a group, we have D � SU(1, 1)/U(1) and we can therefore associate z ∈ D

with an element of the quotient space SU(1, 1)/U(1).
We consider in the following a supervised learning set-up in which the input

data space X corresponds to functionals defined on D and valued in a vectorial
space V . Hence, a data point xi ∈ X will be represented by the graph of
a function fxi

: D → V , so that xi = {(z, fxi
(z)) , z ∈ D}. We then extend

the action ◦ of SU(1, 1) on D to the considered input data space by writing,
∀g ∈ SU(1, 1) and ∀x ∈ X , g◦x = {(z, fx (g ◦ z)) , z ∈ D} .

2 Equivariant Convolution Operator

We introduce in this section a convolution operator defined on the Poincaré disk
D and which is equivariant with respect to the action of SU(1, 1). Corresponding
feature maps can then be embedded within usual neural network topologies.
After introducing local convolution kernels, we discuss the numerical aspects
associated with practical computations.

2.1 Convolution on D

Following [13], we will denote by μG the Haar measure of G = SU(1, 1) that
is normalized according to

∫
G

F (g ◦ 0D) dμG (g) =
∫
D

F (z) dm(z) for all F ∈
L1 (D, dm), where L1 (X, dμ) refers to the set of functions from X to C which
are integrable with respect to the measure μ, with 0D the center of D and where
the measure dm is given for z = z1 + iz2 by dm (z) = dz1dz2

(1−|z|2)2
. We can then

build feature maps ψ : D → C by leveraging on the convolution operator on D.
More precisely, for a kernel function kθ : D → C parameterized by θ ∈ R

�,
an input feature map f : D → C and an element z ∈ D, we will consider the
following operator ψθ

ψθ (z) = (kθ �D f) (z) =
∫

G

kθ

(
g−1 ◦ z

)
f (g ◦ 0D) dμG (g) (4)

as long as the right handside integral is well defined. The operator ψθ can actually
be seen as a specific group-convolution operator which is constant over each coset
so that it only requires to be evaluated on D.

Denoting Lg the left shift operator such that ∀z ∈ D, ∀g ∈ G and ∀φ : D → C,
Lgφ(z) = φ

(
g−1 ◦ z

)
, we show that ψθ is equivariant with respect to the action

of G by writing:

Lhψθ (z) =
∫

G

kθ

(
g−1 ◦

(
h−1 ◦ z

))
f (g ◦ 0D) dμG (g)

action=
∫

G

kθ

(
(hg)−1 ◦ z

)
f (g ◦ 0D) dμG (g)

Haar=
∫

G

kθ

(
g−1 ◦ z

)
Lhf (g ◦ 0D) dμG (g) = kθ �D (Lhf)
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2.2 Kernel Modeling and Locality

To accomodate with the Euclidean nature of a wide range of kernel functionals,
we propose projecting the input data to kθ to a vectorial space with the logarithm
map logD from D to its tangent space (T D)0D at its center. Following [12], we
will generically model the kernel functional as a simple neural network. However,
for the sake of computational efficiency, specific parameterizations can also be
envisioned such as the use of a B-splines expansion as in [2], or more generically,
the use of a well suited functional expansion in (T D)0D .

To localize the kernel action, we leverage on the geodesic distance in the
Poincaré disk ρD and we then restrict the integration in the convolution operator
to the points “close” to z according to the metric ρD, leading to

ψθ,M (z) =
∫

ρD(z,g◦0D)≤M

kθ

(
logD

(
g−1 ◦ z

))
f (g ◦ 0D) dμG (g) (5)

where M is a threshold to be considered as a model hyperparameter and which
could be assimilated as the filter bandwidth in standard CNN. It should also be
noted that the localization of the kernel function ensures the definition of the
integral in the right handside of (5).

2.3 Numerical Aspects

In practice, the integral (5) cannot be computed exactly and a numerical scheme
is therefore required for evaluating the convolution maps on a discrete grid of
points in D. In this section, we tackle the scalability challenges associated with
SU(1, 1) equivariant networks operating on the hyperbolic space D.

Monte-Carlo Method. Following [12], a first approach to the estimation of
(5) is to compute, ∀z ∈ D, the following Monte-Carlo estimator,

ψθ,M
N (z) =

1
N

N∑
i=1

kθ

(
logD

(
g−1

i ◦ z
))

f (gi ◦ 0D) (6)

where the gi ∈ SU(1, 1) are drawn according to the conditional Haar measure
μG

∣∣
B(z,M)

, where B (z,M) is the ball centered in z and of radius M measured
according to the metric ρD. To do so efficiently, we first sample elements in
B (0D,M) and then move to B (z,M) through the group action. The obtained
coset elements are then lifted to SU(1, 1) by sampling random elements of U(1).

Although appealing from a an implementation standpoint, this approach is
severely limited by its exponential complexity in the number of layers of the
considered neural network. To illustrate this point, let’s consider a simple archi-
tecture with 	 convolutional layers of one kernel each and let’s assume that we
are targeting an evaluation of the last convolution map of the layer 	 on m points.
By denoting ni the number of evaluation points required for the evaluation of
ψθi

i and by using a simple induction, we show that ni = mN �−i+1, for 1 ≤ i ≤ 	.
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Approaches such as [17], further generalized in [12], have been introduced to
reduce the computational cost by using a clever reordering of the computations.
However, the corresponding complexity remains exponential and therefore pre-
vents from building deep networks with this Monte-Carlo approach, especially
when working with groups such as SU(1, 1) which require significant sampling.

Helgason-Fourier Analysis. The use of Fourier analysis within G-CNN archi-
tectures to evaluate convolution operators defined on Euclidean spaces has been
previously suggested [9,14]. By leveraging on similar ideas, we here propose
an alternative approach to the Monte-Carlo sampling on SU(1, 1) by using
Helgason-Fourier (HF) transforms [13] of functions defined on the hyperbolic
space D.

For points b ∈ ∂D and z ∈ D, we denote 〈z, b〉 the algebraic distance to the
center of the horocyle based at b through z. Let’s then consider f : D → C such
that z → f(z)e(1−iρ)〈z,b〉 ∈ L1 (D, dm), ∀ρ ∈ R. The HF transform of f is then
defined on R × ∂D by

HF (f) (ρ, b) =
∫
D

f (z) e(1−iρ)〈z,b〉dm(z) (7)

[13] gives the formal expression for the horocyclic wave eν〈z,b〉, for ν ∈ C. Assum-
ing corresponding integrability conditions, the HF transform of the convolution
of two functions F1, F2 : D → C is given by

HF (F1 �D F2) (ρ, b) = HF (F1) (ρ, b) HF (F2) (ρ, b) (8)

As for the Euclidean case, an inversion formula also exists and is given by

f (z) =
1
4π

∫
R

∫
∂D

HF (f) (ρ, b) e(1+iρ)〈z,b〉ρ tanh
(πρ

2

)
dρdb (9)

Using HF transforms allows working with independent discretization grids for
the convolution maps computation across the network structure, but the point-
wise evaluation of each map requires the computation of three integrals, instead
of one in the Monte-Carlo approach. Also, the numerical estimation of the inte-
grals (7) and (9) is quite challenging and leads to convergence issues with classical
schemes. We have obtained satisfactory results by using the Quasi-Monte-Carlo
approach [4] and the corresponding GPU-compatible implementation provided
by the authors. A differentiable estimation of HF

(
z → kθi

(z)1ρD(0D,z)≤M

)
can

therefore be obtained efficiently by using a well chosen functional expansion of
the kernel (e.g., basis of the Fock-Bargmann Hilbert space [11], B-splines [3],
eigenfunctions of the Laplacian on D [13]) and by pre-computing the HF trans-
forms of the corresponding basis elements.

3 Application to THPD Matrix Classification

Let’s denote by T +
n the set of Toeplitz Hermitian Positive Definite (THPD)

matrices of size n. As described in [6], the regularized Burg algorithm allows
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transforming a given matrix Γ ∈ T +
n into a power factor in R

∗
+ and reflection

coefficients μi in a (n − 1) dimensional product of Poincaré spaces D
n−1 =

D × ... × D. Combining this with the formalism introduced in Sect. 1.2, we can
therefore see an element Γ ∈ T +

n as a power factor in R
∗
+ and n−1 coset elements

in SU(1, 1)/U(1).
In the following, we will focus on radar clutter classification and consider in

this context rescaled THPD matrices which can be represented by the reflection
coefficients only. We further assume that the ordering of these coefficients is
not material for our considered classification task, so that we will represent
a given element Γ ∈ T +

n by folding into D with the function fΓ : D → C,
with fΓ (μ) =

∑n−1
i=1 μC1{μ=μi} for μ ∈ D and where μ → μC is the canonical

embedding from D to C.

3.1 Classification Problem

We have considered the problem of pathological radar clutter classification as
formulated in [6]. More precisely, we represent each cell by its THPD auto-
correlation matrix Γ , our goal being to predict the corresponding clutter c ∈
{1, ..., nc} from the observation of Γ . Within our formalism, the training samples
are of the form (fΓi

, ci) and the input data have been obtained by simulating
the auto-correlation matrix of a given cell according to

Z =
√

τR1/2x + bradar (10)

where τ is a positive random variable corresponding to the clutter texture, R
a THPD matrix associated with a given clutter, x ∼ NC (0, σx) and bradar ∼
NC (0, σ), with NC (0, t) referring to the complex gaussian distribution with mean
0 and standard deviation t. In the following, bradar will be considered as a source
of thermal noise inherent to the sensor.

3.2 Numerical Results

We have instanciated a simple neural network constituted of one SU(1, 1) con-
volutional layer with two filters and ReLu activation functions, followed by one
fully connected layer and one softmax layer operating on the complex numbers
represented as 2-dimensional tensors. The kernel functions are modeled as a neu-
ral networks with one layer of 16 neurons with swish activation functions. The
two convolution maps have been evaluated on the same grid constituted of 100
elements of D sampled according to the corresponding volume measure.

To appreciate the improvement provided by our approach, we will compare
the obtained results with those corresponding to the use of a conventional neural
network with roughly the same numbers of trainable parameters and operating
on the complex reflection coefficients. In the following, we will denote N G

σ (resp.
N FC

σ ) the neural network with SU(1, 1) equivariant convolutional (resp. fully
connected) layers and trained on 400 THPD matrices of dimension 10 corre-
sponding to 4 different classes (100 samples in each class) which have been
simulated according to (10) with a thermal noise standard deviation σ.
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Fig. 1. Left handside: confusion matrix corresponding to the evaluation of NG
1 on the

testing set T1, averaged over 10 realizations. Right handside: average accuracy results
of the algorithms NG

1 , NFC
1 , NG

250 and NFC
250 on the testing sets Tσ shown as a function

of σ, together with the corresponding standard deviation as error bars

In order to evaluate the algorithms N G
σ and N FC

σ , we have considered several
testing sets Tσ consisting in 2000 THPD matrices of dimension 10 (500 samples in
each of the 4 classes) simulated according to (10) with a thermal noise standard
deviation σ. The obtained results are shown on Fig. 1 where it can in particular be
seen that N G

1 reaches similar performances as N G
250 and N FC

250 while significantly
outperforming N FC

1 as σ increases, meaning that our approach allows to achieve
some degree of robustness with respect to the variation of σ through the use of
equivariant layers.

4 Conclusions and Further Work

Following recent work on G-CNN specification, we have introduced an approach
for building SU(1, 1) equivariant neural networks and have discussed how to
deal with corresponding numerical challenges by leveraging on Helgason-Fourier
analysis. We have instanciated the proposed algorithm for the problem of THPD
matrix classification arising in the context of Doppler signals processing and have
obtained satisfactory accuracy and robustness results. Further work will include
studying SU(n, n) equivariant neural networks and their applicability to the
problem of classifying Positive Definite Block-Toeplitz matrices by leveraging
on their embedding into Siegel spaces [1]. We will also investigate the link with
the coadjoint representation theory which may allow generalizing our approach
while transferring convolution computation techniques to coadjoint orbits [16].

References

1. Barbaresco, F.: Radar micro-doppler signal encoding in Siegel unit poly-disk for
machine learning in Fisher metric space. In: 2018 19th International Radar Sym-
posium (IRS), pp. 1–10 (2018). https://doi.org/10.23919/IRS.2018.8448021

https://doi.org/10.23919/IRS.2018.8448021


584 P.-Y. Lagrave et al.

2. Bekkers, E.J.: B-spline CNNs on lie groups. In: International Conference on Learn-
ing Representations (2020). https://openreview.net/forum?id=H1gBhkBFDH

3. Bekkers, E.J., Lafarge, M.W., Veta, M., Eppenhof, K.A., Pluim, J.P., Duits,
R.: Roto-translation covariant convolutional networks for medical image analysis
(2018)

4. Borowka, S., Heinrich, G., Jahn, S., Jones, S., Kerner, M., Schlenk, J.: A GPU
compatible Quasi-Monte Carlo integrator interfaced to pySecDec. Comput. Phys.
Commun. 240, 120–137 (2019). https://doi.org/10.1016/j.cpc.2019.02.015

5. Brooks, D., Schwander, O., Barbaresco, F., Schneider, J., Cord, M.: A Hermitian
positive definite neural network for micro-doppler complex covariance processing.
In: 2019 International Radar Conference (RADAR), pp. 1–6 (2019). https://doi.
org/10.1109/RADAR41533.2019.171277

6. Cabanes, Y., Barbaresco, F., Arnaudon, M., Bigot, J.: Toeplitz Hermitian pos-
itive definite matrix machine learning based on Fisher metric. In: Nielsen, F.,
Barbaresco, F. (eds.) GSI 2019. LNCS, vol. 11712, pp. 261–270. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26980-7 27

7. Chakraborty, R., Banerjee, M., Vemuri, B.C.: H-CNNs: convolutional neural net-
works for Riemannian homogeneous spaces. arXiv preprint arXiv:1805.05487 1
(2018)

8. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: Balcan,
M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 48, pp.
2990–2999. PMLR, New York, 20–22 June 2016. http://proceedings.mlr.press/v48/
cohenc16.html
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F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems,
vol. 32, pp. 9145–9156. Curran Associates, Inc. (2019)

11. del Olmo, M.A., Gazeau, J.P.: Covariant integral quantization of the unit disk. J.
Math. Phys. 61(2) (2020). https://doi.org/10.1063/1.5128066

12. Finzi, M., Stanton, S., Izmailov, P., Wilson, A.G.: Generalizing convolutional neu-
ral networks for equivariance to lie groups on arbitrary continuous data (2020)

13. Helgason, S.: Groups and geometric analysis (1984)
14. Kondor, R., Trivedi, S.: On the generalization of equivariance and convolution in

neural networks to the action of compact groups. In: Dy, J., Krause, A. (eds.) Pro-
ceedings of the 35th International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 80, pp. 2747–2755. PMLR, Stockholmsmässan,
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